Uniform nonsingularity and complementarity problems over symmetric cones
نویسندگان
چکیده
Abstract. We study the uniform nonsingularity property recently proposed by the authors and present its applications to nonlinear complementarity problems over a symmetric cone. In particular, by addressing theoretical issues such as the existence of Newton directions, the boundedness of iterates and the nonsingularity of B-subdifferentials, we show that the non-interior continuation method proposed by Xin Chen and Paul Tseng and the squared smoothing Newton method proposed by Liqun Qi, Defeng Sun and Jie Sun are applicable to a more general class of nonmonotone problems. Interestingly, we also show that the linear complementarity problem is globally uniquely solvable under the assumption of uniform nonsingularity.
منابع مشابه
A full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity
In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...
متن کاملOn the Uniform Nonsingularity Property for Linear Transformations on Euclidean Jordan Algebras
In a recent paper, Chua and Yi introduced the so-called uniform nonsingularity property for a nonlinear transformation on a Euclidean Jordan algebra and showed that it implies the global uniqueness property in the context of symmetric cone complementarity problems. In a related paper, Chua, Lin, and Yi raise the question of converse. In this paper, we show that, for linear transformations, the ...
متن کاملA full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem
A full Nesterov-Todd (NT) step infeasible interior-point algorithm is proposed for solving monotone linear complementarity problems over symmetric cones by using Euclidean Jordan algebra. Two types of full NT-steps are used, feasibility steps and centering steps. The algorithm starts from strictly feasible iterates of a perturbed problem, and, using the central path and feasi...
متن کاملInterior Point Trajectories and a Homogeneous Model for Nonlinear Complementarity Problems over Symmetric Cones
We study the continuous trajectories for solving monotone nonlinear mixed complementarity problems over symmetric cones. While the analysis in [5] depends on the optimization theory of convex log-barrier functions, our approach is based on the paper of Monteiro and Pang [17], where a vast set of conclusions concerning continuous trajectories is shown for monotone complementarity problems over t...
متن کاملAn improved infeasible interior-point method for symmetric cone linear complementarity problem
We present an improved version of a full Nesterov-Todd step infeasible interior-point method for linear complementarityproblem over symmetric cone (Bull. Iranian Math. Soc., 40(3), 541-564, (2014)). In the earlier version, each iteration consisted of one so-called feasibility step and a few -at most three - centering steps. Here, each iteration consists of only a feasibility step. Thus, the new...
متن کامل